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EMPIRICAL RISK MINIMIZATION FOR HEAVY-TAILED LOSSES

BY CHRISTIAN BROWNLEES1, EMILIEN JOLY AND GÁBOR LUGOSI1

Pompeu Fabra University, HEC Paris–CNRS and Pompeu Fabra University

The purpose of this paper is to discuss empirical risk minimization when
the losses are not necessarily bounded and may have a distribution with heavy
tails. In such situations, usual empirical averages may fail to provide re-
liable estimates and empirical risk minimization may provide large excess
risk. However, some robust mean estimators proposed in the literature may
be used to replace empirical means. In this paper, we investigate empirical
risk minimization based on a robust estimate proposed by Catoni. We de-
velop performance bounds based on chaining arguments tailored to Catoni’s
mean estimator.

1. Introduction. Heavy-tailed data are commonly encountered in many fields
of research (see, e.g., Embrechts, Klüppelberg and Mikosch [14] and Finkenstadt
and Rootzén [16]). For instance, in finance, the influential work of Mandelbrot [22]
and Fama [15] documented evidence of power-law behavior in asset prices in the
early 1960s. When the data have heavy tails, standard statistical procedures typ-
ically perform poorly and appropriate robust alternatives are needed to carry out
inference effectively. In this paper, we propose a class of robust empirical risk min-
imization procedures for such data that are based on a robust estimator introduced
by Catoni [12].

Empirical risk minimization is one of the basic principles of statistical learning
that is routinely applied in a great variety of problems such as regression function
estimation, classification and clustering. The general model may be described as
follows. Let X be a random variable taking values in some measurable space X and
let F be a set of nonnegative functions defined on X . For each f ∈ F , define the
risk mf = Ef (X) and let m∗ = inff ∈F mf denote the optimal risk. In statistical
learning, n independent random variables X1, . . . ,Xn are available, all distributed
as X, and one aims at finding a function with small risk. To this end, one may
define the empirical risk minimizer

fERM = arg min
f ∈F

1

n

n∑
i=1

f (Xi),
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where, for the simplicity of the discussion and essentially without loss of general-
ity, we implicitly assume that the minimizer exists. If the minimum is achieved by
more than one function, one may pick one of them arbitrarily.

REMARK (Loss functions and risks). The main motivation and terminology
may be explained by the following general prediction problem in statistical learn-
ing. Let the “training data” (Z1, Y1), . . . , (Zn,Yn) be independent identically dis-
tributed pairs of random variables where the Zi take their values in, say, Rm and
the Yi are real-valued. In classification problems, the Yi take discrete values. Given
a new observation Z, one is interested in predicting the value of the corresponding
response variable Y where the pair (Z,Y ) has the same distribution as that of the
(Zi, Yi). A predictor is a function g : Rm → R whose quality is measured with
the help of a loss function � : R × R → R+. The risk of g is then E�(g(Z),Y ).
Given a class G of functions g : Rm → R, empirical risk minimization chooses
one that minimizes the empirical risk (1/n)

∑n
i=1 �(g(Zi), Yi) over all g ∈ G. In

the simplified notation followed in this paper, Xi corresponds to the pair (Zi, Yi),
the function f represents �(g(·), ·) and mf substitutes E�(g(Z),Y ).

The performance of empirical risk minimization is measured by the risk of the
selected function,

mERM = E
[
fERM(X)|X1, . . . ,Xn

]
.

In particular, the main object of interest for this paper is the excess risk mERM −m∗.
The performance of empirical risk minimization has been thoroughly studied and
well understood using tools of empirical process theory. In particular, the simple
observation that

mERM − m∗ ≤ 2 sup
f ∈F

∣∣∣∣∣1

n

n∑
i=1

f (Xi) − mf

∣∣∣∣∣,
allows one to apply the rich theory on the suprema of empirical processes to ob-
tain upper performance bounds. The interested reader is referred to Bartlett and
Mendelson [7], Boucheron, Bousquet and Lugosi [9], Koltchinskii [18], Massart
[23], Mendelson [26], van de Geer [34] for references and recent results in this
area. Essentially all of the theory of empirical minimization assumes either that
the functions f are uniformly bounded or that the random variables f (X) have
sub-Gaussian tails for all f ∈ F . For example, when all f ∈ F take their values
in the interval [0,1], Dudley’s [13] classical metric-entropy bound, together with
standard symmetrization arguments, imply that there exists a universal constant c

such that

EmERM − m∗ ≤ c√
n
E

∫ 1

0

√
logNX(F, ε) dε,(1)



RISK MINIMIZATION FOR HEAVY TAILS 2509

where for any ε > 0, NX(F, ε) is the ε-covering number of the class F under the
empirical quadratic distance dX(f, g) = ( 1

n

∑n
i=1(f (Xi)− g(Xi))

2)1/2, defined as
the minimal cardinality N of any set {f1, . . . , fN } ⊂ F such that for all f ∈ F
there exists an fj ∈ {f1, . . . , fN } with dX(f, fj ) ≤ ε. Of course, this is one of the
most basic bounds and many important refinements have been established.

A tighter bound may be established by the so-called generic chaining method;
see Talagrand [32]. Recall the following definition (see, e.g., [32], Defini-
tion 1.2.3). Let T be a (pseudo) metric space. An increasing sequence (An) of
partitions of T is called admissible if for all n = 0,1,2, . . . ,#An ≤ 22n

. For any
t ∈ T , denote by An(t) the unique element of An that contains t . Let �(A) denote
the diameter of the set A ⊂ T . Define, for β = 1,2,

γβ(T , d) = inf
An

sup
t∈T

∑
n≥0

2n/β�
(
An(t)

)
,

where the infimum is taken over all admissible sequences. Then one has

EmERM − m∗ ≤ c√
n
Eγ2(F, dX),(2)

for some universal constant c. This bound implies (1) as γ2(F, dX) is bounded by
a constant multiple of the entropy integral

∫ 1
0

√
logNX(F, ε) dε (see, e.g., [32]).

However, when the functions f are no longer uniformly bounded and the ran-
dom variables f (X) may have a heavy tail, empirical risk minimization may have
a much poorer performance. This is simply due to the fact that empirical averages
become poor estimates of expected values. Indeed, for heavy-tailed distributions,
several estimators of the mean are known to outperform simple empirical averages.
It is a natural idea to define a robust version of empirical risk minimization based
on minimizing such robust estimators.

In this paper, we focus on an elegant and powerful estimator proposed and ana-
lyzed by Catoni [12]. (A version of) Catoni’s estimator may be defined as follows.

Introduce the nondecreasing differentiable truncation function

φ(x) = −1{x<0} log
(

1 − x + x2

2

)
+ 1{x≥0} log

(
1 + x + x2

2

)
.(3)

To estimate mf = Ef (X) for some f ∈F , define for all μ ∈ R,

r̂f (μ) = 1

nα

n∑
i=1

φ
(
α

(
f (Xi) − μ

))
,

where α > 0 is a parameter of the estimator to be specified below. Catoni’s estima-
tor of mf is defined as the unique value μ̂f for which r̂f (μ̂f ) = 0. [Uniqueness
is ensured by the strict monotonicity of μ 	→ r̂f (μ).] Catoni proves that for any
fixed f ∈ F and δ ∈ [0,1] such that n > 2 log(1/δ), under the only assumption
that Var(f (X)) ≤ v, the estimator above with

α =
√

2 log(1/δ)

n(v + (2v log(1/δ)/(n(1 − (2/n) log(1/δ)))))



2510 C. BROWNLEES, E. JOLY AND G. LUGOSI

satisfies that, with probability at least 1 − 2δ,

|mf − μ̂f | ≤
√

2v log(1/δ)

n(1 − (2/n) log(1/δ))
.(4)

In other words, the deviations of the estimate exhibit a sub-Gaussian behavior.
The price to pay is that the estimator depends both on the upper bound v for the
variance and on the prescribed confidence δ via the parameter α.

Catoni also shows that for any n > 4(1 + log(1/δ)), if Var(f (X)) ≤ v, the
choice

α =
√

2

nv

guarantees that, with probability at least 1 − 2δ,

|mf − μ̂f | ≤ (
1 + log(1/δ)

)√v

n
.(5)

Even though we lose the sub-Gaussian tail behavior, the estimator is independent
of the required confidence level.

Given such a powerful mean estimator, it is natural to propose an empirical risk
minimizer that selects a function from the class F that minimizes Catoni’s mean
estimator. Formally, define

f̂ = arg min
f ∈F

μ̂f ,

where again, for the sake of simplicity we assume that the minimizer exists. (Oth-
erwise one may select an appropriate approximate minimizer and all arguments go
through in a trivial way.)

Once again, as a first step of understanding the excess risk mf̂ − m∗, we may
use the simple bound

mf̂ − m∗ = (mf̂ − μ̂f̂ ) + (
μ̂f̂ − m∗) ≤ 2 sup

f ∈F
|mf − μ̂f |.

When F is a finite class of cardinality, say |F | = N , Catoni’s bound may be com-
bined, in a straightforward way, with the union-of-events bound. Indeed, if the
estimators μ̂f are defined with parameter

α =
√

2 log(N/δ)

n(v + (2v log(N/δ)/(n(1 − (2/n) log(N/δ)))))
,

then, with probability at least 1 − 2δ,

sup
f ∈F

|mf − μ̂f | ≤
√

2v log(N/δ)

n(1 − (2/n) log(N/δ))
.
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Note that this bound requires that supf ∈F Var(f (X)) ≤ v, that is, the variances are
uniformly bounded by a known value v. Throughout the paper, we work with this
assumption. However, this bound does not take into account the structure of the
class F and it is useless when F is an infinite class. Our strategy to obtain mean-
ingful bounds is to use chaining arguments. However, the extension is nontrivial
and the argument becomes more involved. The main results of the paper present
performance bounds for empirical minimization of Catoni’s estimator based on
generic chaining.

REMARK (Median-of-means estimator). Catoni’s estimator is not the only one
with sub-Gaussian deviations for heavy-tailed distributions. Indeed, the median-of-
means estimator, proposed by Nemirovsky and Yudin [28] (and also independently
by Alon, Matias and Szegedy [2]) has similar performance guarantees as (4). This
estimate is obtained by dividing the data in several small blocks, calculating the
sample mean within each block, and then taking the median of these means. Hsu
and Sabato [17] and Minsker [27] introduce multivariate generalizations of the
median-of-means estimator and use it to define and analyze certain statistical learn-
ing procedures in the presence of heavy-tailed data. The sub-Gaussian behavior is
achieved under various assumptions on the loss function. Such conditions can be
avoided here. As an example, we detail applications of our results in Section 4 for
three different examples of loss functions. An important advantage of the median-
of-means estimate over Catoni’s estimate is that the parameter of the estimate (i.e.,
the number of blocks) only depends on the confidence level δ but not on v and,
therefore, no prior upper bound of the variance v is required to compute this es-
timate. Also, the median-of-means estimate is useful even when the variance is
infinite and only a moment of order 1 + ε exists for some ε > 0 (see Bubeck,
Cesa-Bianchi and Lugosi [11]). Lerasle and Oliveira [19] consider empirical min-
imization of the median-of-means estimator and obtain interesting results in vari-
ous statistical learning problems. However, to establish metric-entropy bounds for
minimization of this mean estimate remains to be a challenge.

The rest of the paper is organized as follows. In Section 2, we state and discuss
the main results of the paper. Section 3 is dedicated to the proofs. In Section 4,
we describe some applications to regression under the absolute and squared losses
and k-means clustering. Finally, in Section 5 we present some simulation results
both for regression and k-means clustering. The simulation study gives empirical
evidence that the proposed empirical risk minimization procedure improves per-
formance in a significant manner in the presence of heavy-tailed data. Some of the
more technical arguments are relegated to the Appendix.

2. Main results. The bounds we establish for the excess risk depend on the
geometric structure of the class F under different distances. The L2(P ) distance
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is defined, for f,f ′ ∈ F , by

d
(
f,f ′) = (

E
[(

f (X) − f ′(X)
)2])1/2

and the L∞ distance is

D
(
f,f ′) = sup

x∈X
∣∣f (x) − f ′(x)

∣∣.
We also work with the (random) empirical quadratic distance

dX
(
f,f ′) =

(
1

n

n∑
i=1

(
f (Xi) − f ′(Xi)

)2
)1/2

.

Denote by f ∗ a function with minimal expectation

f ∗ = arg min
f ∈F

mf .

Next, we present two results that bound the excess risk mf̂ − mf ∗ of the mini-
mizer f̂ of Catoni’s risk estimate in terms of metric properties of the class F . The
first result involves a combination of terms involving the γ2 and γ1 functionals un-
der the metrics d and D while the second is in terms of quantiles of γ2 under the
empirical metric dX.

THEOREM 1. Let F be a class of nonnegative functions defined on a set X
and let X,X1, . . . ,Xn be i.i.d. random variables taking values in X . Assume that
there exists v > 0 such that supf ∈F Var(f (X)) ≤ v. Let δ ∈ (0,1/3). Suppose that
f̂ is selected from F by minimizing Catoni’s mean estimator with parameter α.
Then there exists a universal constant L such that, under the condition

6
(
αv + 2 log(δ−1)

nα

)
+ L log

(
2δ−1)(γ2(F, d)√

n
+ γ1(F,D)

n

)
≤ 1

α
,

with probability at least 1 − 3δ, the risk of f̂ satisfies

mf̂ − mf ∗ ≤ 6
(
αv + 2 log(δ−1)

nα

)
+ L log

(
2δ−1)(γ2(F, d)√

n
+ γ1(F,D)

n

)
.

THEOREM 2. Assume the hypotheses of Theorem 1. We denote by diamd(F)

the diameter of the class F under the distance d . Set 
δ such that P{γ2(F, dX) >


δ} ≤ δ
8 . Then there exists a universal constant K such that, under the condition

6
(
αv + 2 log(δ−1)

nα

)
+ K max

(

δ,diamd(F)

)√ log(8/δ)

n
≤ 1

α
,

with probability at least 1 − 3δ, the risk of f̂ satisfies

mf̂ − mf ∗ ≤ 6
(
αv + 2 log(δ−1)

nα

)
+ K max

(

δ,diamd(F)

)√ log(8/δ)

n
.
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In both theorems above, the choice of α only influences the term αv +
2 log(δ−1)/(nα). By taking α =

√
2 log(δ−1)/(nv), this term equals

2

√
2v log(δ−1)

n
.

For example, in that case, the condition in Theorem 1 reduces to

12

√
2v log(δ−1)

n
+ L log

(
δ−1)(γ2(F, d)√

n
+ γ1(F,D)

n

)
≤

√
nv

2 log(δ−1)
.

This holds for sufficiently large values of n. This choice has the disadvantage that
the estimator depends on the confidence level (i.e., on the value of δ). By taking
α = √

2/(nv), independently of δ, one obtains the slightly worse term√
2v

n

(
1 + log

(
δ−1))

.

Observe that the main term in the second part of the bound of Theorem 1 is

L log
(
δ−1)γ2(F, d)√

n

which is comparable to the bound (2) obtained under the strong condition of f (X)

being uniformly bounded. All other terms are of smaller order. Note that this part
of the bound depends on the “weak” distribution-dependent L2(P ) metric d . The
quantity γ1(F,D) ≥ γ2(F, d) also enters the bound of Theorem 1 though only
multiplied by 1/n. The presence of this term requires that F be bounded in the
L∞ distance D which limits the usefulness of the bound. In Section 4, we illus-
trate the bounds on two applications to regression and k-means clustering. In these
applications, in spite of the presence of heavy tails, the covering numbers under
the distance D may be bounded in a meaningful way. Note that no such bound can
hold for “ordinary” empirical risk minimization that minimizes the usual empirical
means (1/n)

∑n
i=1 f (Xi) because of the poor performance of empirical averages

in the presence of heavy tails.
The main merit of the bound of Theorem 2 is that it does not require that the

class F has a finite diameter under the supremum norm. Instead, the quantiles of
γ2(F, dX) enter the picture. In Section 4, we show through the example of L2
regression how these quantiles may be estimated.

3. Proofs. The proofs of Theorems 1 and 2 are based on showing that the
excess risk can be bounded as soon as the supremum of the empirical process
{Xf (μ) : f ∈ F} is bounded for any fixed μ ∈ R, where for any f ∈ F and μ ∈ R,
we define Xf (μ) = r̂f (μ) − rf (μ) with

rf (μ) = 1

α
E

[
φ

(
α

(
f (X) − μ

))]
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and

r̂f (μ) = 1

nα

n∑
i=1

φ
(
α

(
f (Xi) − μ

))
.

The two theorems differ in the way the supremum of this empirical process is
bounded.

Let Aα(δ) = αv + 2 log(δ−1)/(nα).
Once again, we may assume, essentially without loss of generality, that the min-

imum exists. In case of multiple minimizers, we may choose one arbitrarily. The
main result in [12] states that for any δ > 0 such that α2v +2 log(δ−1)/n ≤ 1, with
probability at least 1 − 2δ,

|μ̂f ∗ − mf ∗ | ≤ Aα(δ).(6)

Let �f ∗(δ) be the event on which inequality (6) holds. By definition, P{�f ∗(δ)} ≥
1 − 2δ.

3.1. A deterministic version of μ̂f . We begin with a variant of the argument
of Catoni [12]. It involves a deterministic version μf of the estimator defined, for
each f ∈ F , as the unique solution of the equation rf (μ) = 0.

In Lemma 3 below, we show that μf is in a small (deterministic) interval cen-
tered at mf . For any f ∈ F , μ ∈ R, and ε ≥ 0, define

B+
f (μ, ε) = (mf − μ) + α

2
(mf − μ)2 + α

2
v + ε,

B−
f (μ, ε) = (mf − μ) − α

2
(mf − μ)2 − α

2
v − ε

and let

μ+
f (ε) = mf + αv + 2ε, μ−

f (ε) = mf − αv − 2ε.

As a function of μ, B+
f (μ, ε) is a quadratic polynomial such that μ+

f (ε) is an upper

bound of the smallest root of B+
f (μ, ε). Similarly, μ−

f (ε) is a lower bound of the

largest root of B−
f (μ, ε). Implicitly, we assumed that these roots always exist. This

is not always the case but a simple condition on α guarantees that these roots exists.
In particular, 1 − α2v − 2αε ≥ 0 guarantees that B+

f (μ, ε) = 0 and B−
f (μ, ε) = 0

have at least one solution. This condition will always be satisfied by our choice of
ε and α.

Still following the ideas of [12], the next lemma bounds rf (μ) by the quadratic
polynomials B+ and B−. The lemma will help us compare the zero of rf (μ) to
the zeros of these quadratic functions.

LEMMA 3. For any fixed f ∈ F and μ ∈ R,

B−
f (μ,0) ≤ rf (μ) ≤ B+

f (μ,0),(7)
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and, therefore, mf − αv ≤ μf ≤ mf + αv. In particular,

B−̂
f

(μ,0) ≤ rf̂ (μ) ≤ B+̂
f

(μ,0).

For any μ and ε, such that rf̂ (μ) ≤ ε, if 1 − α2v − 2αε ≥ 0, then

mf̂ ≤ μ + αv + 2ε.(8)

PROOF. Writing Y for α(f (X) − μ) and using the fact that φ(x) ≤ log(1 +
x + x2/2) for all x ∈ R,

exp
(
αrf (μ)

) ≤ exp
(
E

[
log

(
1 + Y + Y 2

2

)])

≤ E

[
1 + Y + Y 2

2

]

≤ 1 + α(mf − μ) + α2

2

[
v + (mf − μ)2] ≤ exp

(
αB+

f (μ,0)
)
.

Thus, we have rf (μ) − B+
f (μ,0) ≤ 0 (see Figure 1). Since this last inequality is

true for any f , supf (rf (μ) − B+
f (μ,0)) ≤ 0 and the second inequality of (7) is

proved. The second statement of the lemma may be proved by a similar argument.

FIG. 1. Representation of rf (μ) and the quadratic functions B−
f (μ,0) and B+

f (μ,0). rf (μ) is

squeezed between B−
f (μ,0) and B+

f (μ,0). In particular at μ+
f (0) [resp., μ−

f (0)], rf (μ) is nonpos-

itive (resp., nonnegative). Any μ such that rf (μ) ≤ ε is above μ−
f (ε).
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If rf̂ (μ) ≤ ε, then B−̂
f

(μ,0) ≤ ε which is equivalent to B−̂
f

(μ, ε) ≤ 0. If

1 − α2v − 2αε ≥ 0 then a solution of B−̂
f

(μ, ε) = 0 exists and since rf̂ (μ) is a
nonincreasing function, μ is above the largest of these two solutions. This implies
μ−̂

f
(ε) ≤ μ which gives inequality (8) (see Figure 1). �

Inequality (8) is the key tool to ensure that the risk mf̂ of the minimizer f̂ can
be upper bounded as soon as�rf̂ is. It remains to find the smallest μ and ε such that
�rf (μ) is bounded uniformly on F .

3.2. Bounding the excess risk in terms of the supremum of an empirical pro-
cess. The key to all proofs is that we link the excess risk to the supremum of
the empirical process Xf (μ) = r̂f (μ) − rf (μ) as f ranges through F for a suit-
ably chosen value of μ. For fixed μ ∈ R and δ ∈ (0,1), define the 1 − δ quantile of
supf ∈F |Xf (μ)−Xf ∗(μ)| by Q(μ, δ), that is, the infimum of all positive numbers
q such that

P

{
sup
f ∈F

∣∣Xf (μ) − Xf ∗(μ)
∣∣ ≤ q

}
≥ 1 − δ.

First, we need a few simple facts summarized in the next lemma.

LEMMA 4. Let μ0 = mf ∗ + Aα(δ). Then on the event �f ∗(δ), the following
inequalities hold:

1. r̂f̂ (μ0) ≤ 0;
2. rf ∗(μ0) ≤ 0;
3. −r̂f ∗(μ0) ≤ 2Aα(δ).

PROOF. We prove each inequality separately.

1. First, note that on �f ∗(δ) inequality (6) holds, and we have μ̂f̂ ≤ μ̂f ∗ ≤ μ0.
Since r̂f̂ is a nonincreasing function of μ, r̂f̂ (μ0) ≤ r̂f̂ (μ̂f̂ ) = 0.

2. By (7), μf ∗ ≤ mf ∗ + αv ≤ mf ∗ + αv + 2 log(δ−1)/(nα) = μ0. Since rf ∗ is
a nonincreasing function, rf ∗(μ0) ≤ rf ∗(μf ∗) = 0.

3. r̂f ∗ is a 1-Lipschitz function and, therefore,∣∣̂rf ∗(μ0)
∣∣ = ∣∣̂rf ∗(μ̂f ∗) − r̂f ∗(μ0)

∣∣ ≤ |μ̂f ∗ − μ0|
≤ |μ̂f ∗ − mf ∗ | + |mf ∗ − μ0|
≤ 2Aα(δ)

which gives −r̂f ∗(μ0) ≤ 2Aα(δ). �

We will use Lemma 3 with μ0 introduced in Lemma 4. Recall that P{�f ∗(δ)} ≥
1 − 2δ.



RISK MINIMIZATION FOR HEAVY TAILS 2517

With the notation introduced above, we see that with probability at least 1 − δ,

rf̂ (μ0) ≤ r̂f̂ (μ0) + rf ∗(μ0) − r̂f ∗(μ0)

+ ∣∣rf̂ (μ0) − r̂f̂ (μ0) − rf ∗(μ0) + r̂f ∗(μ0)
∣∣

≤ r̂f̂ (μ0) + rf ∗(μ0) − r̂f ∗(μ0)

+ sup
f ∈F

∣∣rf (μ0) − r̂f (μ0) − rf ∗(μ0) + r̂f ∗(μ0)
∣∣

≤ r̂f̂ (μ0) + rf ∗(μ0) − r̂f ∗(μ0) + Q(μ0, δ).

This inequality, together with Lemma 4, implies that, with probability at least 1 −
3δ,

rf̂ (μ0) ≤ 2Aα(δ) + Q(μ0, δ).

Now using Lemma 3 with ε = 2Aα(δ) + Q(μ0, δ) and under the condition 1 −
α2v − 4αAα(δ) − 2αQ(μ0, δ) ≥ 0, we have

mf̂ − mf ∗ ≤ αv + 5Aα(δ) + 2Q(μ0, δ)
(9)

≤ 6
(
αv + 2 log(δ−1)

nα

)
+ 2Q(μ0, δ),

with probability at least 1−3δ. The condition 1−α2v−4αAα(δ)−2αQ(μ0, δ) ≥
0 is satisfied whenever

6
(
αv + 2 log(δ−1)

nα

)
+ 2Q(μ0, δ) ≤ 1

α

holds.

3.3. Bounding the supremum of the empirical process. Theorems 1 and 2
both follow from (9) by two different ways of bounding the quantile Q(μ, δ) of
supf ∈F |Xf (μ) − Xf ∗(μ)|. Here, we present these two inequalities. Both of them
use basic results of “generic chaining”; see Talagrand [32]. Theorem 1 follows
from (9) and the next inequality.

PROPOSITION 5. Let μ ∈ R and α > 0. There exists a universal constant L

such that for any δ ∈ (0,1),

Q(μ, δ) ≤ L log
(
2δ−1)(γ2(F, d)√

n
+ γ1(F,D)

n

)
.

The proof is an immediate consequence of Theorem 12 and (14) in the Appendix
and the following lemma.
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LEMMA 6. For any μ ∈R, α > 0, f,f ′ ∈ F , and t > 0,

P
{∣∣Xf (μ) − Xf ′(μ)

∣∣ > t
} ≤ 2 exp

(
− nt2

2(d(f, f ′)2 + (2D(f,f ′)t/(3)))

)
,

where the distances d,D are defined at the beginning of Section 2.

PROOF. Observe that n(Xf (μ)−Xf ′(μ)) is the sum of the independent zero-
mean random variables

Ci

(
f,f ′) = 1

α
φ

(
α

(
f (Xi) − μ

)) − 1

α
φ

(
α

(
f ′(Xi) − μ

))
−

[
1

α
E

[
φ

(
α

(
f (X) − μ

))] − 1

α
E

[
φ

(
α

(
f ′(X) − μ

))]]
.

Note that since the truncation function φ is 1-Lipschitz, we have Ci(f,f ′) ≤
2D(f,f ′). Also,

n∑
i=1

E
[
Ci

(
f,f ′)2] ≤

n∑
i=1

E
[((

f (Xi) − μ
) − (

f ′(Xi) − μ
))2] = nd

(
f,f ′)2

.

The lemma follows from Bernstein’s inequality [see, e.g., [10], equation (2.10)].
�

Similarly, Theorem 2 is implied by (9) and the following. Recall the notation of
Theorem 2.

THEOREM 7. Let μ ∈ R, α > 0, and δ ∈ (0,1/3). There exists a universal
constant K such that

Q(μ, δ) ≤ K max
(

δ,diamd(F)

)√ log(8/δ)

n
.

PROOF. Assume 
δ ≥ diamd(F). The proof is based on a standard sym-
metrization argument. Let (X′

1, . . . ,X
′
n) be independent copies of (X1, . . . ,Xn)

and define

Zi(f ) = 1

nα
φ

(
α

(
f (Xi) − μ

)) − 1

nα
φ

(
α

(
f

(
X′

i

) − μ
))

.

Introduce also independent Rademacher random variables (ε1, . . . , εn). For any
f ∈ F , denote by Z(f ) = ∑n

i=1 εiZi(f ). Then by Hoeffding’s inequality, for all
f,g ∈ F and for every t > 0,

P(ε1,...,εn)

{∣∣Z(f ) − Z(g)
∣∣ > t

} ≤ 2 exp
(
− t2

2dX,X′(f, g)2

)
,(10)
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where P(ε1,...,εn) denotes probability with respect to the Rademacher variables only

(i.e., conditional on the Xi and X′
i) and dX,X′(f, g) =

√∑n
i=1(Zi(f ) − Zi(g))2 is

a random distance. Using (16) in the Appendix with distance dX,X′ and (10), we
get that, for all λ > 0,

E(ε1,...,εn)

[
exp

(
λ sup

f ∈F

∣∣∣∣∣
n∑

i=1

εi

[
Zi(f ) − Zi

(
f ∗)]∣∣∣∣∣

)]
(11)

≤ 2 exp
(
λ2L2γ2(F, dX,X′)2/4

)
,

where L is a universal constant from Proposition 14. Observe that since x 	→ φ(x)

is Lipschitz with constant 1,

dX,X′(f, g)

=
(

1

n2α2

n∑
i=1

(
φ

(
α

(
f (Xi) − μ

)) − φ
(
α

(
f

(
X′

i

) − μ
))

− φ
(
α

(
g(Xi) − μ

)) + φ
(
α

(
g
(
X′

i

) − μ
)))2

)1/2

≤ 1√
n

(
1

n

n∑
i=1

(
f (Xi) − g(Xi)

)2
)1/2

+ 1√
n

(
1

n

n∑
i=1

(
f

(
X′

i

) − g
(
X′

i

))2
)1/2

.

This implies

γ2(F, dX,X′) ≤ 1√
n

(
γ2(F, dX) + γ2(F, dX′)

)
.

Combining this with (11), we obtain

P

{
sup
f ∈F

∣∣Z(f ) − Z
(
f ∗)∣∣ ≥ t

}
≤ P

{
sup
f ∈F

∣∣Z(f ) − Z
(
f ∗)∣∣ ≥ t

∣∣γ2(F, dX) ≤ 
δ and γ2(F, dX′) ≤ 
δ

}
+ 2P

{
γ2(F, dX) > 
δ

}
≤ EX,X′

[
E(ε1,...,εn)

[
eλ supf ∈F |∑n

i=1 εi [Zi(f )−Zi(f
∗)]|]∣∣γ2(F, dX) ≤ 
δ and

γ2(F, dX′) ≤ 
δ

]
e−λt

+ δ

4
(by the definition of 
δ)

≤ 2 exp
(

λ2L2

n

2

δ − λt

)
+ δ

4
.
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Optimization in λ with t = 2L
δ

√
log(8/δ)/n gives

P

{
sup
f ∈F

∣∣Z(f ) − Z
(
f ∗)∣∣ ≥ t

}
≤ δ

2
.

A standard symmetrization inequality of tail probabilities of empirical processes
(see, e.g., [34], Lemma 3.3) guarantees that

P

{
sup
f ∈F

∣∣Xf (μ) − Xf ∗(μ)
∣∣ ≥ 2t

}
≤ 2P

{
sup
f ∈F

∣∣Z(f ) − Z
(
f ∗)∣∣ ≥ t

}
as long as for any f ∈ F , P{|Xf (μ) − Xf ∗(μ)| ≥ t} ≤ 1

2 . Recall that Xf (μ) −
Xf ∗(μ) is a zero-mean random variable. Then by Chebyshev’s inequality, it suf-
fices to have t ≥ √

2 diamd(F)/
√

n. Indeed,

Var(Xf (μ) − Xf ′(μ))

t2

≤ Var((1/α)φ(α(f (X) − μ)) − (1/α)φ(α(f ∗(X) − μ)))

nt2

≤ E[(f (X) − f ∗(X))2]
nt2

≤ diamd(F)2

nt2 .

Without loss of generality, we can assume L ≥ 1. Since for any choice of δ < 1
3 ,√

log(8
δ
) >

√
2 we have L
δ

√
log(8

δ
) ≥ diamd(F)

√
2. Thus,

P

{
sup
f ∈F

∣∣Xf (μ) − Xf ∗(μ)
∣∣ ≥ 2L
δ

√
log(8/δ)

n

}
≤ δ

as desired. Now, if 
δ < diamd(F), P{γ2(F, dX) > diamd(F)} ≤ δ
8 and the same

argument holds for diamd(F) instead of 
δ . This completes the proof. �

4. Applications. In this section, we describe two applications of Theorems 1
and 2 to simple statistical learning problems. The first is a regression estimation
problem in which we distinguish between L1 and L2 risks and the second is k-
means clustering.

4.1. Empirical risk minimization for regression.

4.1.1. L1 regression. Let (Z1, Y1), . . . , (Zn,Yn) be independent identically
distributed random variables taking values in Z ×R where Z is a bounded subset
of (say) Rm. Suppose G is a class of functions Z → R bounded in the L∞ norm,
that is, supg∈G supz∈Z |g(z)| < ∞. We denote by � the diameter of G under the
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distance induced by this norm. First, we consider the setup when the risk of each
g ∈ G is defined by the L1 loss

R(g) = E
∣∣g(Z) − Y

∣∣,
where the pair (Z,Y ) has the same distribution of the (Zi, Yi) and is independent
of them. Let g∗ = arg ming∈G R(g) be a minimizer of the risk (which, without loss
of generality, is assumed to exist). The statistical learning problem we consider
here consists of choosing a function ĝ from the class G that has a risk R(ĝ) not
much larger than R(g∗).

The standard procedure is to pick ĝ by minimizing the empirical risk
(1/n)

∑
i=1 |g(Zi) − Yi | over g ∈ G. However, if the response variable Y is un-

bounded and may have a heavy tail, ordinary empirical risk minimization may fail
to provide a good predictor of Y as the empirical risk is an unreliable estimate of
the true risk.

Here, we propose choosing ĝ by minimizing Catoni’s estimate. To this end, we
only need to assume that the second moment of Y is bounded by a known constant.
More precisely, assume that EY 2 ≤ σ 2 for some σ > 0. Then supg∈G Var(|g(Z) −
Y |) ≤ 2σ 2 + 2 supg∈G supz∈Z |g(z)|2 def= v is a known and finite constant.

Now for all g ∈ G and μ ∈R, define

r̂g(μ) = 1

nα

n∑
i=1

φ
(
α

(∣∣g(Xi) − Yi

∣∣ − μ
))

,

where φ is the truncation function defined in (3). Define R̂(g) as the unique value
for which r̂g(R̂(g)) = 0. The empirical risk minimizer based on Catoni’s risk esti-
mate is then

ĝ = arg min
g∈G

R̂(g).

By Theorem 1, the performance of ĝ may be bounded in terms of covering num-
bers of the class of functions F = {f (z, y) = |g(z) − y| : g ∈ G} based on the
distance

D
(
f,f ′) = sup

z∈Z,y∈R
∣∣∣∣g(z) − y

∣∣ − ∣∣g′(z) − y
∣∣∣∣ ≤ sup

z∈Z
∣∣g(z) − g′(z)

∣∣.
Thus, the covering numbers of F under the distance D may be bounded in terms
of the covering numbers of G under the L∞ distance. Denoting by Nd(A, ε) the
ε-covering number of a set A under the metric d , we obtain the following.

COROLLARY 8. Consider the setup described above. We assume∫ �
0 logN∞(G, ε) dε < ∞. Let n ∈ N, δ ∈ (0,1/3) and α =

√
2 log(δ−1)/(nv).
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There exists an integer N0 and a universal constant C such that, for all n ≥ N0,
with probability at least 1 − 3δ,

R(ĝ) − R
(
g∗)

≤ 12

√
2v log(δ−1)

n
+ C log

(
2δ−1)( 1√

n

∫ �

0

√
logNd(G, ε) dε + O

(
1

n

))
.

PROOF. Clearly, if two distances d1 and d2 satisfy d1 ≤ d2, then γ1(F, d1) ≤
γ1(F, d2). Thus, γ1(F,D) ≤ γ1(G,‖ · ‖∞) ≤ L

∫ �
0 logN∞(G, ε) dε < ∞

[see (15)] and γ1(F,D)/n = O(1/n). The condition

12

√
2v log(δ−1)

n
+ C log

(
2δ−1)( 1√

n

∫ �

0

√
logNd(G, ε) dε + O

(
1

n

))

≤
√

nv

2 log(δ−1)

is satisfied for sufficiently large n. Apply Theorem 1. �

Note that the bound essentially has the same form as (1) but to apply (1) it is
crucial that the response variable Y is bounded or at least has sub-Gaussian tails.
We get this under the weak assumption that Y has a bounded second moment
(with a known upper bound). The price we pay is that covering numbers under the
distance dX are now replaced by covering numbers under the supremum norm.

4.1.2. L2 regression. Here, we consider the same setup as in Section 4.1.1 but
now the risk is measured by the L2 loss. The risk of each g ∈ G is defined by the
L2 loss

R(g) = E
(
g(Z) − Y

)2
.

Note that Theorem 1 is useless here as the difference |R(g)−R(g′)| is not bounded
by the L∞ distance of g and g′ anymore and the covering numbers of F under the
metric D are infinite. However, Theorem 2 gives meaningful bounds. Let g∗ =
arg ming∈G R(g) and again we choose ĝ by minimizing Catoni’s estimate.

Here, we need to assume that EY 4 ≤ σ 2 for some σ > 0. Then

supg∈G Var((g(Z) − Y)2) ≤ 8σ 2 + 8 supg∈G supz∈Z |g(z)|4 def= v is a known and
finite constant.

By Theorem 2, the performance of ĝ may be bounded in terms of covering
numbers of the class of functions F = {f (z, y) = (g(z) − y)2 : g ∈ G} based on
the distance

dX
(
f,f ′) =

(
1

n

n∑
i=1

((
g(Zi) − Yi

)2 − (
g′(Zi) − Yi

)2)2
)1/2

.
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Note that∣∣(g(Zi) − Yi

)2 − (
g′(Zi) − Yi

)2∣∣ = ∣∣g(Zi) − g′(Zi)
∣∣∣∣2Yi − g(Zi) − g′(Zi)

∣∣
≤ 2

∣∣g(Zi) − g′(Zi)
∣∣(|Yi | + �

)
≤ 2d∞

(
g,g′)(|Yi | + �

)
,

and, therefore,

dX
(
f,f ′) ≤ 2d∞

(
g,g′)√√√√1

n

n∑
i=1

(|Yi | + �
)2

≤ 2
√

2d∞
(
g,g′)√√√√�2 + 1

n

n∑
i=1

Y 2
i .

By Chebyshev’s inequality,

P

{
1

n

n∑
i=1

Y 2
i −E

[
Y 2]

> t

}
≤ Var(Y 2)

nt2 ≤ σ 2

nt2

thus 1
n

∑n
i=1 Y 2

i > E[Y 2] +
√

8σ 2/(nδ) with probability at most δ/8 and

dX
(
f,f ′) > 2

√
2d∞

(
g,g′)

√√√√
�2 +E

[
Y 2

] +
√

8σ 2

nδ

occurs with a probability bounded by δ
8 . Recall again that for two distances d1 and

d2 such that d1 ≤ cd2 one has γ2(G, d1) ≤ cγ2(G, d2). Then Theorem 2 applies
with


δ = 2
√

2

√√√√
�2 +E

[
Y 2

] +
√

8σ 2

nδ
γ2(G, d∞)

and 
δ ≥ � ≥ diamd(F).

COROLLARY 9. Consider the setup described above. Let n ∈ N, δ ∈ (0,1/3)

and α =
√

2 log(δ−1)/(nv). There exists an integer N0 and a universal constant C

such that, for all n ≥ N0, with probability at least 1 − 3δ,

R(ĝ) − R
(
g∗)

≤ 12

√
2v log(δ−1)

n

+ C

√
log

(
8

δ

)√
�2 +E[Y 2] + 8σ 2/(nδ)

n

∫ �

0

√
logN∞(G, ε) dε.
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PROOF. Apply Theorem 2 and note that the condition holds for sufficiently
large n. �

The bound of the corollary essentially matches the best rates of convergence
one can get even in the case of bounded regression under such general conditions.
For special cases, such as linear regression, better bounds may be proven for other
methods; see Audibert and Catoni [5], Hsu and Sabato [17] and Minsker [27].

4.2. k-means clustering under heavy-tailed distribution. In k-means cluste-
ring—or vector quantization—one wishes to represent a distribution by a finite
number of points. Formally, let X be a random vector taking values in R

m and let
P denote the distribution of X. Let k ≥ 2 be a positive integer that we fix for the
rest of the section. A clustering scheme is given by a set of k cluster centers C =
{y1, . . . , yk} ⊂ R

m and a quantizer q : Rm → C. Given a distortion measure � :
R

m ×R
m → [0,∞), one wishes to find C and q such that the expected distortion

Dk(P,q) = E�
(
X,q(X)

)
is as small as possible. The minimization problem is meaningful whenever
E�(X,0) < ∞ which we assume throughout. Typical distortion measures are of
the form �(x, y) = ‖x − y‖α where ‖ · ‖ is a norm on R

m and α > 0 (typically
α equals 1 or 2). Here, for concreteness and simplicity, we assume that � is the
Euclidean distance �(x, y) = ‖x − y‖ though the results may be generalized in a
straightforward manner to other norms. In a way equivalent to the arguments of
Section 4.1.2, the results may be generalized to the case of the quadratic distor-
tion �(x, y) = ‖x − y‖2. In order to avoid repetition of arguments, the details are
omitted.

It is not difficult to see that if E‖X‖ < ∞, then there exists a (not necessar-
ily unique) quantizer q∗ that is optimal, that is, q∗ is such that for all clustering
schemes q ,

Dk(P,q) ≥ Dk

(
P,q∗) def= D∗

k (P ).

It is also clear that q∗ is a nearest neighbor quantizer, that is,∥∥x − q∗(x)
∥∥ = min

yi∈C
‖x − yi‖.

Thus, nearest neighbor quantizers are determined by their cluster centers C =
{y1, . . . , yk}. In fact, for all quantizers with a particular set C of cluster centers,
the corresponding nearest neighbor quantizer has minimal distortion and, there-
fore, it suffices to restrict our attention to nearest neighbor quantizers.

In the problem of empirical quantizer design, one is given an i.i.d. sample
X1, . . . ,Xn drawn from the distribution P and one’s aim is to find a quantizer
qn whose distortion

Dk(P,qn) = E
[∥∥X − qn(X)

∥∥|X1, . . . ,Xn

]
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is as close to D∗
k (P ) as possible. A natural strategy is to choose a quantizer—or

equivalently, a set C of cluster centers—by minimizing the empirical distortion

Dk(Pn, q) = 1

n

n∑
i=1

∥∥Xi − q(Xi)
∥∥ = 1

n

n∑
i=1

min
j=1,...,k

‖Xi − yj‖,

where Pn denotes the standard empirical distribution based on X1, . . . ,Xn. If
E‖X‖ < ∞, then the empirically optimal quantizer asymptotically minimizes the
distortion. More precisely, if qn denotes the empirically optimal quantizer [i.e.,
qn = arg minq Dk(Pn, q)], then

lim
n→∞Dk(P,qn) = D∗

k (P ) with probability 1;
see Pollard [29, 31] and Abaya and Wise [1] (see also Linder [21]). The rate of
convergence of Dk(P,qn) to D∗

k (P ) has drawn considerable attention; see, for
example, Pollard [30], Bartlett, Linder and Lugosi [6], Antos [3], Antos, Györfi
and György [4], Biau, Devroye and Lugosi [8], Maurer and Pontil [25] and Levrard
[20]. Such rates are typically studied under the assumption that X is almost surely
bounded. Under such assumptions, one can show that

EDk(P,qn) − D∗
k (P ) ≤ C(P, k,m)n−1/2,

where the constant C(P, k,m) depends on ess sup‖X‖, k, and the dimension m.
The value of the constant has mostly been investigated in the case of quadratic
loss �(x, y) = ‖x − y‖2 but most proofs may be modified for the case studied
here. For the quadratic loss, one may take C(P, k,m) as a constant multiple of
B2 min(

√
k1−2/mm,k) where B = ess sup‖X‖.

However, little is known about the finite-sample performance of empirically
designed quantizers under possibly heavy-tailed distributions. In fact, there is no
hope to extend the results cited above for distributions with finite second moment
simply because empirical averages are poor estimators of means under such gen-
eral conditions.

In the recent paper of Telgarsky and Dasgupta [33], bounds on the excess risk
under conditions on higher moments have been developed. They prove a bound
of O(n−1/2+2/p) for the excess distortion where p is the number of moments of
‖X‖ that are assumed to be finite. Here, we show that there exists an empirical
quantizer q̂n whose excess distortion Dk(P, q̂n) − D∗

k (P ) is of the order of n−1/2

(with high probability) under the only assumption that E[‖X‖2] is finite. This may
be achieved by choosing a quantizer that minimizes Catoni’s estimate of the dis-
tortion.

The proposed empirical quantizer uses two parameters that depend on the (un-
known) distribution of X. For simplicity, we assume that upper bounds for these
two parameters are available. (Otherwise either one may try to estimate them or,
as the sample size grows, use increasing values for these parameters. The details
go beyond the scope of this paper.)
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One of these parameters is the second moment Var(X) = E[‖X −E[X]‖2] and
let V be an upper bound. The other parameter ρ > 0 is an upper bound for the
norm of the possible cluster centers. The next lemma offers an estimate.

LEMMA 10 (Linder [21]). Let 2 ≤ j ≤ k be the unique integer such that D∗
k =

· · · = D∗
j < D∗

j−1 and define ε = (D∗
j−1 − D∗

j )/2. Let (y1, . . . , yj ) be a set of
cluster centers such that the distortion of the corresponding quantizer is less than
D∗

j + ε. Let Br = {x : ‖x‖ ≤ r} denote the closed ball of radius r > 0 centered at
the origin. If ρ > 0, is such that:

• ρ
10P(Bρ/10) > 2E‖X‖,

• P(B2ρ/5) > 1 − ε2

4E[‖X‖2] ,

then for all 1 ≤ i ≤ k, ‖yi‖ ≤ ρ.

Now we are prepared to describe the proposed empirical quantizer. Let Cρ be
the set of all collections C = {y1, . . . , yk} ∈ (Rm)k of cluster centers with ‖yj‖ ≤ ρ

for all j = 1, . . . , k. For each C ∈ Cρ , denote by qC the corresponding quantizer.
Now for all C ∈ Cρ , we may calculate Catoni’s mean estimator of the distortion
D(P,qC) = E‖X−qC(X)‖ = Eminj=1,...,k ‖Xi −yj‖ defined as the unique value
μ ∈ R for which

1

nα

n∑
i=1

φ
(
α

(
min

j=1,...,k
‖Xi − yj‖ − μ

))
= 0,

where we use the parameter value α = √
2/(nkV ). Denote this estimator by

D̂(Pn, qC) and let q̂n be any quantizer minimizing the estimated distortion. An
easy compactness argument shows that such a minimizer exists.

The main result of this section is the following bound for the distortion of the
chosen quantizer.

THEOREM 11. Assume that Var(X) ≤ V < ∞ and n ≥ m. Then, with proba-
bility at least 1 − δ,

Dk(P, q̂n) − Dk

(
P,q∗) ≤ C

(
log

1

δ

)(√
V k

n
+

√
mk

n

)
+ O

(
1

n

)
,

where the constant C only depends on ρ.

PROOF. The result follows from Theorem 1. All we need to check is that
Var(minj=1,...,k ‖X − yj‖) is bounded by kV and estimate the covering numbers
of the class of functions

Fρ =
{
fC(x) = min

y∈C
‖x − y‖ : C ∈ Cρ

}
.
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The variance bound follows simply by the fact that for all C ∈ C,

Var
(

min
j=1,...,k

‖X − yj‖
)

≤
k∑

i=1

Var
(‖X − yi‖)

≤
k∑

i=1

E
[‖X −EX‖2] + ‖EX − yi‖2 −E

[‖X − yi‖]2

≤ kV .

In order to use the bound of Theorem 1, we need to bound the covering numbers
of the class Fρ under both metrics d and D. We begin with the metric

D(fC,fC′) = sup
x∈Rm

∣∣fC(x) − fC′(x)
∣∣.

The notation Bz(ε, d) refers to the ball under the metric d of radius ε centered at z.
Let Z be a subset of Bρ such that

BBρ := {
Bz

(
ε,‖ · ‖) : z ∈ Z

}
is a covering of the set Bρ by balls of radius ε under the Euclidean norm. Let
C ∈ Cρ and associate to any yi ∈ C one of the centers in Z such that ‖yi − zi‖ ≤ ε.
If there is more than one possible choice for zi , we pick one of them arbitrarily. We
denote by qC′ the nearest neighbor quantizer with codebook C′ = (zi)i . Finally, let
Si = q−1

C′ (zi). Now clearly, ∀i,∀x ∈ Si

fC(x) − fC′(x) = min
1≤j≤k

‖x − yj‖ − min
1≤j≤k

‖x − zj‖
= min

1≤j≤k
‖x − yj‖ − ‖x − zi‖

≤ ‖x − yi‖ − ‖x − zi‖ ≤ ε

and similarly, fC′(x) − fC(x) ≤ ε. Then fC ∈ BfC′ (ε,D) and

BFρ := {
BfC

(ε,D) : C ∈ Zk}
is a covering of Fρ . Since Z can be taken such that |Z| = N‖·‖(Bρ, ε) we obtain

Nd(Fρ, ε) ≤ ND(Fρ, ε) ≤ N‖·‖(Bρ, ε)k.

By standard estimates on the covering numbers of the ball Bρ by balls of size ε

under the Euclidean metric,

N‖·‖(Bρ, ε) ≤
(

4ρ

ε

)m

(see, e.g., Matousek [24]). In other words, there exists a universal constant L and
constants Cρ and C′

ρ that depends only on ρ such that

γ2(Fρ, d) ≤ L

∫ 2ρ

0

√
logNd(Fρ, ε) dε ≤ Cρ

√
km,
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and

γ1(Fρ,D) ≤ L

∫ 2ρ

0
logND(Fρ, ε) dε ≤ C′

ρkm.

Theorem 1 may now be applied to the class Fρ . �

5. Simulation study. In this closing section, we present the results of two
simulation exercises that assess the performance of the estimators developed in
this work.

5.1. L2 regression. The first application is an L2 regression exercise. Data are
simulated from a linear model with heavy-tailed errors and the L2 regression pro-
cedure based on Catoni’s risk minimizer introduced in Section 4.1.2 is used for
estimation. The procedure is benchmarked against regular (“vanilla”) L2 regres-
sion based on the minimization of the empirical L2 loss.

The simulation exercise is designed as follows. We simulate (Z1, Y1), (Z2, Y2),

. . . , (Zn,Yn) i.i.d. pairs of random variables in R
5 ×R. The vector Zi of explana-

tory variables is drawn from a multivariate normal distribution with zero mean,
unit variance and correlation matrix equal to an equi-correlation matrix with cor-
relation ρ = 0.9. The response variable Yi is generated as

Yi = ZT
i θ∗ + εi,

where the parameter vector θ∗ is set to (0.25,−0.25,0.50,0.70,−0.75) and εi is
a zero mean error term. The error term εi is drawn from a Pareto distribution with
tail parameter β and is appropriately recentered in order to have zero mean. As it is
well known, the tail parameter β determines which moments of the Pareto random
variable are finite. More specifically, the moment of order k exists only if k < β .
The focus is on finding the value of θ which minimizes the L2 risk

E
∣∣Y − ZT

i θ
∣∣2.

The parameter θ is estimated using the Catoni and the vanilla L2 regressions. Let
R̂C(θ) denote the solution of the equation

r̂θ (μ) = 1

nα

n∑
i=1

φ
(
α

(∣∣Yi − ZT
i θ

∣∣2 − μ
)) = 0.

Then the Catoni L2 regression estimator is defined as

θ̂nC = arg min
θ

R̂C(θ).

The vanilla L2 regression estimator is defined as the minimizer of the empirical
L2 loss,

θ̂nV = arg min
θ

R̂V (θ) = arg min
θ

1

n

n∑
i=1

∣∣Yi − ZT
i θ

∣∣2,
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which is the classical least squares estimator. The precision of each estimator is
measured by their excess risk

R(θ̂nC) − R
(
θ∗) = E

∣∣Y − ZT θ̂nC

∣∣2 −E
∣∣Y − ZT θ∗∣∣2,

R(θ̂nV ) − R
(
θ∗) = E

∣∣Y − ZT θ̂nV

∣∣2 −E
∣∣Y − ZT θ∗∣∣2.

We estimate excess risk by simulation. For each replication of the simulation ex-
ercise, we estimate the risk of the estimators and the optimal risk using sample
averages based on an i.i.d. sample (Z′

1, Y
′
1), . . . , (Z

′
m,Y ′

m) that is independent of
the one used for estimation, that is,

R̃(θ̂nC) = 1

m

m∑
i=1

∣∣Y ′
i − Z′

i
T
θ̂nC

∣∣2,
R̃(θ̂nV ) = 1

m

m∑
i=1

∣∣Y ′
i − Z′

i
T
θ̂nV

∣∣2,(12)

R̃
(
θ∗) = 1

m

m∑
i=1

∣∣Y ′
i − Z′

i
T
θ∗∣∣2.

The simulation experiment is replicated for different values of the Pareto tail pa-
rameter β ranging from 2.01 to 6.01 and different values of the sample size n,
ranging from 50 to 1000. For each combination of the tail parameter β and sample
size n, the experiment is replicated 1000 times.

Figure 2 displays the Monte Carlo estimate of the excess risk of the Catoni and
benchmark regression estimators as functions of the tail parameter β when the
sample size n is equal to 500. The left panel shows the level of the excess risks
R(θ̂nC) − R(θ∗) and R(θ̂nV ) − R(θ∗) as a function of β and the right one shows
the percentage improvement of the excess risk of the Catoni procedure over the
benchmark calculated as (R(θ̂nV )−R(θ̂nC))/(R(θ̂nC)−R(θ∗)). When the tails are

FIG. 2. L2 regression parameter estimation. The figure plots the excess risk of the Catoni and
vanilla L2 regression parameter estimators (a) and the percentage improvement of the Catoni pro-
cedure relative to the vanilla (b) as a function of the tail parameter β for a sample size n equal
to 500.
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TABLE 1
Relative performance of the Catoni L2 parameter estimator

β n = 50 n = 100 n = 250 n = 500 n = 750 n = 1000

2.01 3872.10 440.50 171.30 222.70 218.20 142.80
2.50 169.20 158.70 151.50 106.70 91.70 57.40
3.01 137.60 178.00 89.00 52.50 62.70 63.50
3.50 54.40 20.90 41.30 39.20 38.10 33.50
4.01 30.20 44.40 25.50 15.70 16.30 15.90
4.50 16.50 12.10 11.30 10.60 6.90 13.70
5.01 10.20 7.80 10.20 6.40 5.70 3.10
5.50 6.00 14.80 3.90 2.90 2.10 2.20
6.01 3.90 1.90 2.70 2.10 1.90 1.40

The table reports the percentage improvement of the excess risk of the Catoni L2 regression estimator
relative to the vanilla procedure for different values of the tail parameter β and sample size n.

not excessively heavy (high values of β) the difference between the procedures is
small. As the tails become heavier (small values of β), the risks of both procedures
increase. Importantly, the Catoni estimator becomes progressively more efficient
as the tails become heavier and becomes significantly more efficient when the tail
parameter is close to 2. Detailed results for different values of n are reported in
Table 1. Overall, the Catoni L2 regression estimator never performs worse than
the benchmark, and it is substantially better when the tails of the data are heavy.

5.2. k-means. In the second experiment, we carry out a k-means clustering
exercise. Data are simulated from a heavy-tailed mixture distribution and then
cluster centers are chosen by minimizing Catoni’s estimate of the L2 distortion.
The performance of the algorithm is benchmarked against the (“vanilla”) k-means
algorithm procedure where the distortion is estimated by the standard empirical
average.

The simulation exercise is designed as follows. An i.i.d. sample of random vec-
tors X1, . . . ,Xn in R

2 is drawn from a four-component mixture distribution with
equal weights. The means of the mixture components are (5,5), (−5,5), (−5,−5)

and (5,−5). Each component of the mixture is made up of two appropriately cen-
tered independent draws from a Pareto distribution with tail parameter β . The clus-
ter centers obtained by the k-means algorithm based on Catoni and the vanilla
k-means algorithm are denoted, respectively, by q̂nC and q̂nV . (Since finding the
empirically optimal cluster centers is computationally prohibitive, we use the well-
known iterative optimization procedure “k-means” for the vanilla version and a
similar variant for the Catoni scheme.) Analogously to the previous exercise, we
summarize the performance of the clustering procedures using the excess risk of
the algorithms, that is,

Dk(P, q̂nC) − Dk

(
P,q∗)

, Dk(P, q̂nV ) − Dk

(
P,q∗)

,
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where q∗ denotes the means of the mixture components. We estimate excess risk
by simulation. We compute the distortion of the quantizers using an i.i.d. sample
X′

1, . . . ,X
′
m of vectors that is independent of the ones used for estimation, that is,

Dk(Pm, q̂nC) = 1

m

m∑
i=1

min
j=1,...,k

∥∥X′
i − q̂nC

(
X′

i

)∥∥2
,

Dk(Pm, q̂nV ) = 1

m

m∑
i=1

min
j=1,...,k

∥∥X′
i − q̂nV

(
X′

i

)∥∥2
,(13)

Dk

(
Pm,q∗) = 1

m

m∑
i=1

min
j=1,...,k

∥∥X′
i − q∗(

X′
i

)∥∥2
.

The experiment is replicated for different values of the tail parameter β ranging
from 2.01 to 6.01 and different values of the sample size n ranging from 50 to
1000. For each combination of tail parameter β and sample size n the experiment
is replicated 1000 times.

Figure 3 displays the Monte Carlo estimate of excess risk of the Catoni and
benchmark estimators as a function of tail parameter β for n = 500. The left
panel shows the estimated excess risk while the right panel shows the per-
centage improvement of the excess risk of the Catoni procedure, calculated as
(Dk(P, q̂nV ) − Dk(P, q̂nC))/(Dk(P, q̂nC) − Dk(P,q∗)).

The overall results are analogous to the ones of the L2 regression application.
When the tails of the mixture are not excessively heavy (high values of β) the dif-
ference in the procedures is small. As the tails become heavier (small values of β),
the risk of both procedures increases, but the Catoni algorithm becomes progres-
sively more efficient. The percentage gains for the Catoni procedure are substantial
when the tail parameter is smaller than 4. Table 2 reports detailed results for dif-
ferent values of n. As in the L2 regression simulation study, the Catoni k-means
algorithm never performs worse than the benchmark and it is substantially better
when the tails of the mixture are heavy.

FIG. 3. k-means quantizer estimation. The figure plots the excess risk of the Catoni and vanilla
k-means quantizer estimator (a) and the percentage improvement of the Catoni procedure relative to
the vanilla (b) as a function of the tail parameter β for a sample size n equal to 500.
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TABLE 2
Relative performance of the Catoni k-means quantizer estimator

β n = 50 n = 100 n = 250 n = 500 n = 750 n = 1000

2.01 823.80 2180.40 3511.60 6278.90 7858.70 10,684.60
2.50 404.50 1007.40 2959.80 4255.40 6828.60 9093.60
3.01 301.10 312.20 286.80 298.60 813.60 1560.20
3.50 129.60 188.60 213.30 271.40 448.60 410.00
4.01 73.80 30.90 26.80 20.30 18.20 13.10
4.50 27.60 22.90 16.50 11.70 9.50 10.10
5.01 16.40 10.80 11.60 8.70 6.00 7.20
5.50 9.00 6.80 9.20 5.00 4.10 4.00
6.01 3.50 4.70 5.00 2.70 3.20 3.10

The table reports the improvement of the Catoni k-means quantizer estimator relative to the vanilla
procedure for different values of the tail parameter β and sample size n.

APPENDIX

A.1. A chaining theorem. The following result is a version of standard
bounds based on “generic chaining”; see Talagrand [32]. We include the proof
for completeness.

Recall that if ψ is a nonnegative increasing convex function defined on R+ with
ψ(0) = 0, then the Orlicz norm of a random variable X is defined by

‖X‖ψ = inf
{
c > 0 : E

[
ψ

( |X|
c

)]
≤ 1

}
.

We consider Orlicz norms defined by

ψ1(x) = exp(x) − 1 and ψ2(x) = exp
(
x2) − 1.

For further information on Orlicz norms, see [35], Chapter 2.2. First, ‖X‖ψ1 ≤
‖X‖ψ2

√
log(2) holds. Also note that, by Markov’s inequality, ‖X‖ψ1 ≤ c implies

that P{|X| > t} ≤ 2e−t/c and similarly, if ‖X‖ψ2 ≤ c, then P{|X| > t} ≤ 2e−t2/c2
.

Then

X ≤ ‖X‖ψ1 log
(
2δ−1)

with probability at least 1 − δ,
(14)

X ≤ ‖X‖ψ2

√
log

(
2δ−1

)
with probability at least 1 − δ.

Recall the following definition (see, e.g., [32], Definition 1.2.3). Let T be a
(pseudo) metric space. An increasing sequence (An) of partitions of T is called
admissible if for all n = 0,1,2, . . . ,#An ≤ 22n

. For any t ∈ T , denote by An(t)

the unique element of An that contains t . Let �(A) denote the diameter of the set
A ⊂ T . Define, for β = 1,2,

γβ(T , d) = inf
An

sup
t∈T

∑
n≥0

2n/β�
(
An(t)

)
,
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where the infimum is taken over all admissible sequences. First of all, we know
from [32], equation (1.18), that there exists a universal constant L such that

γβ(T , d) ≤ L

∫ diamd (T )

0

(
logNd(T , ε)

)1/β
dε.(15)

THEOREM 12. Let (Xt)t∈T be a stochastic process indexed by a set T on
which two (pseudo) metrics, d1 and d2, are defined such that T is bounded with
respect to both metrics. Assume that for any s, t ∈ T and for all x > 0,

P
{|Xs − Xt | > x

} ≤ 2 exp
(
−1

2

x2

d2(s, t)2 + d1(s, t)x

)
.

Then for all t ∈ T ,∥∥∥sup
s∈T

|Xs − Xt |
∥∥∥
ψ1

≤ L
(
γ1(T , d1) + γ2(T , d2)

)
with L ≤ 384 log(2).

The proof of Theorem 12 uses the following lemma.

LEMMA 13 ([35], Lemma 2.2.10). Let a, b > 0 and assume that the random
variables X1, . . . ,Xm satisfy, for all x > 0,

P
{|Xi | > x

} ≤ 2 exp
(
−1

2

x2

b + ax

)
.

Then ∥∥∥ max
1≤i≤m

Xi

∥∥∥
ψ1

≤ 48
(
a log(1 + m) + √

b
√

log(1 + m)
)
.

PROOF OF THEOREM 12. Consider an admissible sequence (Bn)n≥0 such that
for all t ∈ T , ∑

n≥0

2n�1
(
Bn(t)

) ≤ 2γ1(T , d1)

and an admissible sequence (Cn)n≥0 such that for all t ∈ T ,∑
n≥0

2n/2�2
(
Cn(t)

) ≤ 2γ2(T , d2).

Now we may define an admissible sequence by intersection of the elements of
(Bn−1)n≥1 and (Cn−1)n≥1: set A0 = {T } and let

An = {B ∩ C : B ∈ Bn−1 and C ∈ Cn−1}.
(An)n≥0 is an admissible sequence because each An is increasing and contains at
most (22n−1

)2 = 22n
sets. Define a sequence of finite sets T0 = {t} ⊂ T1 ⊂ · · · ⊂ T
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such that Tn contains a single point in each set of An. For any s ∈ T , denote by
πn(s) the unique element of Tn in An(s). Now for any s ∈ Tk+1, we write

Xs − Xt =
∞∑

k=0

(Xπk+1(s) − Xπk(s)).

Then, using the fact that ‖ · ‖ψ1 is a norm and Lemma 13,∥∥∥sup
s∈T

|Xs − Xt |
∥∥∥
ψ1

≤
∞∑

k=0

∥∥∥ max
s∈Tk+1

|Xπk+1(s) − Xπk(s)|
∥∥∥
ψ1

≤ 48
∞∑

k=0

(
d1

(
πk+1(s),πk(s)

)
log

(
1 + 22k+1)

+ d2
(
πk+1(s),πk(s)

)√
log

(
1 + 22k+1))

.

Since (An)n≥0 is an increasing sequence, πk+1(s) and πk(s) are both in Ak(s).
By construction, Ak(s) ⊂ Bk(s) and, therefore, d1(πk+1(s),πk(s)) ≤ �1(Bk(s)).
Similarly, we have d2(πk+1(s),πk(s)) ≤ �2(Ck(s)). Using log(1 + 22k+1

) ≤
4 log(2)2k , we get∥∥∥max

s∈T
|Xs − Xt |

∥∥∥
ψ1

≤ 192 log(2)

[ ∞∑
k=0

2k�1
(
Bk(s)

) +
∞∑

k=0

2k/2�2
(
Ck(s)

)]

≤ 384 log(2)
[
γ1(T , d1) + γ2(T , d2)

]
. �

PROPOSITION 14. Assume that for any s, t ∈ T and for all x > 0,

P
{|Xs − Xt | > x

} ≤ 2 exp
(
− x2

2d2(s, t)2

)
.

Then for all t ∈ T , ∥∥∥sup
s∈T

|Xs − Xt |
∥∥∥
ψ2

≤ Lγ2(T , d2),

where L is a universal constant.

The proof of Proposition 14 is similar to the proof of Theorem 12. One merely
needs to replace Lemma 13 by Lemma 2.2.2 in [35] and proceed identically. The
details are omitted.

We may use Proposition 14 to bound the moment generating function of
sups∈T |Xs − Xt | as follows. Set S = sups∈T |Xs − Xt |. Then using ab ≤ (a2 +
b2)/2, we have, for every λ > 0,

exp(λS) ≤ exp
(
S2/‖S‖2

ψ2
+ λ2‖S‖2

ψ2
/4

)
,
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and, therefore,

E

[
exp

(
λ sup

s∈T

|Xs − Xt |
)]

≤ 2 exp
(
λ2L2γ2(T , d2)

2/4
)
.(16)
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